Towards cardiac and respiratory motion characterization from electrophysiology data for improved real time MR-integration
نویسندگان
چکیده
Background Electro-anatomical voltage mapping (EAM) is an invasive technique used for the identification of ventricular tachycardia (VT) substrate and subsequent guidance of VT ablation [1]. The mapping of VT substrate is very timeconsuming procedure, requires highly skilled electrophysiologist, is associated with patient risk and is an invasive procedure. Late gadolinium enhancement (LGE) MRI allows non-invasive evaluation of 3D structure of scar. Therefore, LGE has the potential to identify the VT substrate and can now be integrated in the current clinical platform for guidance of VT ablation as a roadmap. However, fusion of the two imaging modality is very challenging due to respiratory and cardiac motion during the mapping which results in large errors in data fusion. Our aim in this study is to develop a novel algorithm to detect the respiratory and cardiac-induced motion of the mapping catheter during the VT ablation to facilitate integration of LGE MRI to EAM data.
منابع مشابه
Advanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملCharacterization of Respiratory and Cardiac Motion from Electro-Anatomical Mapping Data for Improved Fusion of MRI to Left Ventricular Electrograms
Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI) and electro-anatomical voltage mapping (EAM) is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However, both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the accuracy of current rigid fusion techniques....
متن کاملReducing the respiratory motion artifacts in PET cardiology: A simulation study
Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...
متن کاملXMR guided cardiac electrophysiology study and radio frequency ablation
Introduction: XMR systems are a new type of interventional facility in which patients can be rapidly transferred between x-ray and MR systems on a floating table. We have previously developed a technique to register MR and x-ray images obtained from such systems. We are carrying out a programme of XMR guided cardiac electrophysiology study (EPS) and radio frequency ablation (RFA). Aim: The aim ...
متن کاملRespiratory motion correction of PET using MR-constrained PET-PET registration
BACKGROUND Respiratory motion in positron emission tomography (PET) is an unavoidable source of error in the measurement of tracer uptake, lesion position and lesion size. The introduction of PET-MR dual modality scanners opens a new avenue for addressing this issue. Motion models offer a way to estimate motion using a reduced number of parameters. This can be beneficial for estimating motion f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2013